Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add filters

Language
Document Type
Year range
1.
Axioms ; 12(4):321, 2023.
Article in English | ProQuest Central | ID: covidwho-2291729

ABSTRACT

A fractional order COVID-19 model consisting of six compartments in Caputo sense is constructed. The indirect transmission of the virus through susceptible populations by the shedding effect is studied. Equilibrium solutions are calculated, and basic reproduction ratio (that depends both on direct and indirect mode of transmission), existence and uniqueness, as well as stability analysis of the solution of the model, are studied. The paper studies the effect of optimal control policy applied to shedding effect. The control is the observation of standard hygiene practices and chemical disinfectants in public spaces. Numerical simulations are carried out to support the analytic result and to show the significance of the fractional order from the biological viewpoint.

2.
Vaccines (Basel) ; 11(4)2023 Mar 29.
Article in English | MEDLINE | ID: covidwho-2302549

ABSTRACT

In this study, we provide a fractional-order mathematical model that considers the effect of vaccination on COVID-19 spread dynamics. The model accounts for the latent period of intervention strategies by incorporating a time delay τ. A basic reproduction number, R0, is determined for the model, and prerequisites for endemic equilibrium are discussed. The model's endemic equilibrium point also exhibits local asymptotic stability (under certain conditions), and a Hopf bifurcation condition is established. Different scenarios of vaccination efficacy are simulated. As a result of the vaccination efforts, the number of deaths and those affected have decreased. COVID-19 may not be effectively controlled by vaccination alone. To control infections, several non-pharmacological interventions are necessary. Based on numerical simulations and fitting to real observations, the theoretical results are proven to be effective.

3.
Vaccines (Basel) ; 11(1)2022 Dec 20.
Article in English | MEDLINE | ID: covidwho-2231209

ABSTRACT

It is a known fact that there are a particular set of people who are at higher risk of getting COVID-19 infection. Typically, these high-risk individuals are recommended to take more preventive measures. The use of non-pharmaceutical interventions (NPIs) and the vaccine are playing a major role in the dynamics of the transmission of COVID-19. We propose a COVID-19 model with high-risk and low-risk susceptible individuals and their respective intervention strategies. We find two equilibrium solutions and we investigate the basic reproduction number. We also carry out the stability analysis of the equilibria. Further, this model is extended by considering the vaccination of some non-vaccinated individuals in the high-risk population. Sensitivity analyses and numerical simulations are carried out. From the results, we are able to obtain disease-free and endemic equilibrium solutions by solving the system of equations in the model and show their global stabilities using the Lyapunov function technique. The results obtained from the sensitivity analysis shows that reducing the hospitals' imperfect efficacy can have a positive impact on the control of COVID-19. Finally, simulations of the extended model demonstrate that vaccination could adequately control or eliminate COVID-19.

4.
Vaccines (Basel) ; 11(1)2023 Jan 09.
Article in English | MEDLINE | ID: covidwho-2200935

ABSTRACT

In this paper, we present a fractional-order mathematical model in the Caputo sense to investigate the significance of vaccines in controlling COVID-19. The Banach contraction mapping principle is used to prove the existence and uniqueness of the solution. Based on the magnitude of the basic reproduction number, we show that the model consists of two equilibrium solutions that are stable. The disease-free and endemic equilibrium points are locally stably when R0<1 and R0>1 respectively. We perform numerical simulations, with the significance of the vaccine clearly shown. The changes that occur due to the variation of the fractional order α are also shown. The model has been validated by fitting it to four months of real COVID-19 infection data in Thailand. Predictions for a longer period are provided by the model, which provides a good fit for the data.

5.
Vaccines (Basel) ; 10(12)2022 Dec 13.
Article in English | MEDLINE | ID: covidwho-2163715

ABSTRACT

A fractional-order model consisting of a system of four equations in a Caputo-Fabrizio sense is constructed. This paper investigates the role of negative and positive attitudes towards vaccination in relation to infectious disease proliferation. Two equilibrium points, i.e., disease-free and endemic, are computed. Basic reproduction ratio is also deducted. The existence and uniqueness properties of the model are established. Stability analysis of the solutions of the model is carried out. Numerical simulations are carried out and the effects of negative and positive attitudes towards vaccination areclearly shown; the significance of the fractional-order from the biological point of view is also established. The positive effect of increasing awareness, which in turn increases positive attitudes towards vaccination, is also shown numerically.The results show that negative attitudes towards vaccination increase infectious disease proliferation and this can only be limited by mounting awareness campaigns in the population. It is also clear from our findings that the high vaccine hesitancy during the COVID-19 pandemicisan important problem, and further efforts should be madeto support people and give them correct information about vaccines.

6.
Physica A ; 603: 127813, 2022 Oct 01.
Article in English | MEDLINE | ID: covidwho-1907659

ABSTRACT

This study examines the dynamics of COVID-19 variants using a Caputo-Fabrizio fractional order model. The reproduction ratio R 0 and equilibrium solutions are determined. The purpose of this article is to use a non-integer order derivative in order to present information about the model solutions, uniqueness, and existence using a fixed point theory. A detailed analysis of the existence and uniqueness of the model solution is conducted using fixed point theory. For the computation of the iterative solution of the model, the fractional Adams-Bashforth method is used. Using the estimated values of the model parameters, numerical results are used to support the significance of the fractional-order derivative. The graphs provide useful information about the complexity of the model, and provide reliable information about the model for any case, integer or non-integer. Also, we demonstrate that any variant with the largest basic reproduction ratio will automatically outperform the other variant.

7.
Physica A ; 2022.
Article in English | EuropePMC | ID: covidwho-1904439

ABSTRACT

This study examines the dynamics of COVID - 19 variants using a Caputo - Fabrizio fractional order model. The reproduction ratio

8.
Nonlinear Dyn ; 106(2): 1213-1227, 2021.
Article in English | MEDLINE | ID: covidwho-1240050

ABSTRACT

Pandemic is an unprecedented public health situation, especially for human beings with comorbidity. Vaccination and non-pharmaceutical interventions only remain extensive measures carrying a significant socioeconomic impact to defeating pandemic. Here, we formulate a mathematical model with comorbidity to study the transmission dynamics as well as an optimal control-based framework to diminish COVID-19. This encompasses modeling the dynamics of invaded population, parameter estimation of the model, study of qualitative dynamics, and optimal control problem for non-pharmaceutical interventions (NPIs) and vaccination events such that the cost of the combined measure is minimized. The investigation reveals that disease persists with the increase in exposed individuals having comorbidity in society. The extensive computational efforts show that mean fluctuations in the force of infection increase with corresponding entropy. This is a piece of evidence that the outbreak has reached a significant portion of the population. However, optimal control strategies with combined measures provide an assurance of effectively protecting our population from COVID-19 by minimizing social and economic costs.

SELECTION OF CITATIONS
SEARCH DETAIL